Ethanol-Gasoline Blends: Fuel Economy and Emissions Benefits

Matthew Brusstar, U. S. EPA

Presented at the SAE Government and Industry Meeting in Washington, D.C.
May 13, 2003
Overview

- EPA program in alcohol fuels
 - Background on EPA program
 - Neat ethanol fuel and ethanol-gasoline blends
 - Efficiency
 - Criteria, Greenhouse Gas (GHG) Emissions

- Summary & Future Outlook
EPA Program in Alcohol Fuels Research

NVFEL: A “Center of Excellence” for Alcohol Research

- **Fuels research and engine testing programs initiated at EPA in late 70’s/early 80’s**
 - Research in feasibility/safety of alcohols as automotive fuels
 - Successful engine and vehicle demonstrations with methanol

- **Lead role in engine fuel effects studies under PNGV program**
 - Led to development of advanced methanol-fueled engines for hybrid vehicles
 - More recent work with ethanol and ethanol blends
EPA Engine Test Program

Characteristics of EPA alcohol fuel test engine*

- 1.9L Port Fuel Injected, Spark Ignited, Turbocharged (VNT)
- Stoichiometric fueling
- Designed for use with neat alcohol fuels (e.g., E100, E85)
 - 19.5:1 compression ratio
 - 2.0 swirl ratio
- EGR, VNT used to modulate load from 6 to 20 bar BMEP.
 - Throttling at near-idle conditions to 6 bar BMEP
- Control of Intake Air Temperature (IAT)
 - Intercooler
 - EGR cooler
- Conventional FFV injectors, ignition system and three-way catalyst

(*-More Detail: SAE Paper 2002-01-2743)
Results of Neat Alcohol Fuel Testing

- Fuels Tested: Ethanol (E100), Methanol (M100)
 - High Efficiency
 - 42% peak efficiency
 - >40% efficiency down to 6-8 bar BMEP
 - High Specific Power
 - >20 bar peak BMEP (turbocharged)
 - Low Criteria and Greenhouse Gas (GHG) Emissions
 - Criteria emissions on the level of Tier II
 - Use of low-GHG, renewable fuels
Extension to Ethanol-Gasoline Blends

- EPA study to examine emissions/fuel economy benefits of ethanol blends
 - E85, E95: EPAct alternative fuels
 - E50, E30: best benefit/cost ratio?
 - E10: gasohol

- Other Implied Benefits:
 - Homeland security: reduced import dependence
 - Lower greenhouse gas (GHG) emissions
 - Lower air toxics emissions
Brake Thermal Efficiency: Ethanol (E100)

- Over 41% peak efficiency
 - MBT reached with 19.5:1 CR
- Broad regions of high efficiency
 - No throttling over range shown
Upper Limits to Efficiency (E100)

Extended Knock Limit:
- Suppression with EGR
- Management of IAT

Extended Throttling Limit:
- Higher tolerance for EGR
- Management of IAT

Knock Limit
Throttling Limit
Flammability Limits of Ethanol Blends

Higher Laminar Flame Speed:
- Extended dilute flammability limit for ethanol compared to gasoline
- Less throttling required at light loads

Ethanol content determines EGR tolerance, hence breadth of efficiency islands
Peak Efficiency: Ethanol-Gasoline Blends

EPA Engine: peak efficiency highlights the benefit of higher compression ratio
Criteria Emissions Results

- Engine Out Emissions
 - NOx: lower with increasing alcohol %
 - CO, Soot: ultra-low due to oxygen in fuel
 - HC, aldehydes: High

- Conventional aftertreatment options
 - Stoichiometric operation permits Three-Way Catalyst (TWC)
 - Past work at EPA has demonstrated effective TWC performance on M100 vehicles operating over the FTP
GHG Emissions

Greatest GHG reduction per gallon of ethanol: may lie in the range of 10-50%
Summary & Future Outlook

Benefits of Ethanol-Gasoline Blends

- High efficiency: comparable to state-of-the-art diesel
- Low criteria, GHG and air toxics emissions

Next Steps in Alcohol Engine Research

- Develop a basis for evaluating market tradeoffs of ethanol-gasoline blends
 - Determine best ethanol blend fraction(s)
 - Determine “optimal” engine hardware, calibration
- Demonstrate the technology on a vehicle platform
 - Hydraulic hybrid vehicle
 - Conventional powertrain

Further Information, contact: Matt Brusstar, U. S. EPA
(734)214-4791, brusstar.matt@epa.gov